

WEES Medium

Kies, L. (1967): Über Zellteilung und Zygotenbildung bei Roya obtusa (Bréb.) West et West. - Mitteilungen des Staatsinstituts für Allgemeine Botanik Hamburg, Vol. 12: p. 35-42.

Engels, M. (1995): Liste der Sammlung von Conjugaten-Kulturen (SVCK) am Institut für Allgemeine Botanik der Universität Hamburg: Mitteilungen des Institut für Allgemeine Botanik der Universität Hamburg, Vol. 25: p. 65-98.

For 1000 mL final culture medium add the following quantities (Volume) of stock solutions (SL) prepared at the given concentrations to 850 mL dd- H_2O . Add <u>one component after the other until each one has completely mixed</u> and finally fill up to 1000 mL.

All stock solutions can be stored unsterilised at 4 $^{\circ}$ C. Soil extract should be autoclaved twice on consecutive days and stored at +4 $^{\circ}$ C. Store vitamin mix (SL 8) at -20 $^{\circ}$ C.

Stock Solution (SL)	Volume	Component	Concentration in SL	Conc. in final Medium
SL 1	1 mL	KNO ₃	10.0 g · 100 mL ⁻¹	9.89 · 10⁻⁴ M
SL 2	1 mL	$MgSO_4 \cdot 7H_2O$	2.0 g · 100 mL ⁻¹	8.11 · 10 ⁻⁵ M
SL 3	1 mL	$(NH_4)_2HPO_4$	2.0 g · 100 mL ⁻¹	1.51 · 10 ⁻⁴ M
SL 4	1 mL	CaSO ₄	saturated solution	
SL 5	1 mL	trace elements	see below	
SL 6	1 mL	Fe-solution	see below	
SL 7	100 mL	soil extract	see below	
SL 8	1 mL	vitamin mix	see below	add aseptically after medium (SL

Adjust medium to final pH of 5.5 or as desired with 0.1n HCl and autoclave at 121 °C for 30 min.

SL 5	Na ₂ EDTA · 2H ₂ O (Titriplex III)	0.3 g · 100 mL ⁻¹	8.05 · 10 ⁻⁶ M
Trace elements	H₃BO₃	0.114 g · 100 mL ⁻¹	1.84 · 10 ⁻⁵ M
solution without Fe	$MnCl_2 \cdot 4H_2O$	14.4 mg · 100 mL ⁻¹	7.27 · 10 ⁻⁷ M
	ZnSO ₄ ·7H ₂ O	2.1 mg · 100 mL ⁻¹	7.30 · 10 ⁻⁸ M
	CoCl ₂ · 6H ₂ O	0.4 mg · 100 ml ⁻¹	1.68 · 10 ⁻⁸ M

Combine all trace elements in one SL of 100 mL. Dissolve each component completely one after the other. It may need autoclaving to dissolve. Trace elements solution should <u>not</u> be stored in glass containers, but instead in teflon or polycarbonate containers to prevent adsorption of metals to container surface.

SL 6	EDTA (not Na-salt, Titriplex II)	0.52 g · 100 mL ⁻¹	1.77 · 10 ⁻⁵ M
Fe-EDTA solution	FeSO ₄ · 7H ₂ O	0.50 g · 100 mL ⁻¹	1.79 · 10 ⁻⁵ M
	1n-KOH	5.4 ml · 100 ml · 1	5.40 · 10 ⁻⁵ M

Prepare SL 6 in a final volume of 100 mL. Dissolve each component completely one after the other. This solution should <u>not</u> be stored in glass containers, but instead in teflon or polycarbonate containers to prevent adsorption of Fe to container surface.

SL 7 (soil extract)	garden soil (unfertilised)	10 g · 125 mL ⁻¹
---------------------	----------------------------	-----------------------------

Boil 10 g soil (e.g. unfertilised garden soil) in 125 mL distilled water for 5 minutes, let sediment, decant supernatant and centrifuge (15 min. at 5500 rpm), then filter through 1.2-3 μ m filter until clear. Tyndallize (important to kill fungal spores!): heat the extract to 100 °C for 15-30 min., then rapidly cool to room temperature and let stand for 24 h; repeat this two more times on consecutive days. Finish by one autolave cycle (121 °C for 30 min.). Store at +4 °C.

SL 8	Vit. B ₁ (Thiamin-HCl)	100.0 mg · L ⁻¹	2.97 · 10 ⁻⁸ M
Vitamin mix	Vit. H (Biotin)	1.0 mg · L ⁻¹	4.09 · 10 ⁻⁹ M
	Vit. B ₁₂ (Cobalamin)	0.2 mg · L ⁻¹	1.20 · 10 ⁻¹⁰ M
	Vit. B₃ (Niacin)	0.1 mg ⋅ L ⁻¹	8.10 · 10 ⁻¹⁰ M

Prepare SL 8 in a final volume of 1 L. Dissolve each component completely one after the other. For storage acidify to a pH of 4.5-5.0 and autoclave, or dispense aseptically through 0.2 μ m sterile filters in plastic containers (reaction vials, cryovials, polycarbonate tubes) in 1 mL aliquots and **add aseptically to prepared medium after autoclaving and cooling.** Store at -20 °C.

For stock cultures on agar slants add 1.0-1.3 % Agar (e.g. purified high strength, 1000 g · cm⁻²) to prepared medium before autoclaving.